Using 3D Terrain Data of Earth, Mars, and the Moon

David Black, New Haven School, Spanish Fork, Utah

elementsunearthed@gmail.com

http://spacedoutclassroom.com

Examples of Projects Using Big Data

- Plate tectonics: Gunung Batur on Bali, uplift and erosion patterns of the San Rafael Swell and Book Cliffs, Utah.
- Narrow-band image data of Mercury from the MESSENGER space probe to determine if surface features are from impacts or volcanoes.
- Data from the Mars Reconnaissance Orbiter CRISM instrument to look for explosive volcanoes on Mars.
- Tutorial video on using Mars MOLA data: <u>https://youtu.be/kzdO9PANu_8</u>

Part 1: Finding the Data Earth Data: USGS EarthExplorer

- EarthExplorer is a one-stop site for geological and geographical data.
- It includes many data sets for the entire Earth.
- Use the map to define the area you want data from.

Selecting Data Sets in EarthExplorer

- Under the DataSets tab at the bottom, you can select the type of data you want.
- For Digital Elevation models, the best resolution data is from the Shuttle Radar Topography Mission.
- **SRTM** covers 55 ° N to 55 ° S latitude.
- Use **GTOPO30** for other areas.
- Choose **Results** and select the best image, then download.

Mars MOLA Data

- Part of NASA Planetary Data System (PDS) Node for Geosciences at the Washington University in St. Louis (WUSTL)
- Choose Mars from the list at left and the Mars Experimental Gridded Data Record (MEDGR) link.
- Scroll to the bottom and choose the desired quadrant of Mars from the table according to latitude and longitude.

Downloading MOLA Data

- Choose the Topography data, with prefix **MEGT.**
- Read the corresponding .LBL metadata file to see the numbers of rows and columns.
 You will need this information for ImageJ.
- The data is 16 bit signed data.
- This is the most detailed data, but a lower resolution image of all of Mars can be found at:

http://astrogeology.usgs.gov/search/details/ Mars/GlobalSurveyor/MOLA/Mars MOLA DEM mosaic global 463m/cub

MEGDR Tiled Image Files and Labels at 128 Pixels Per Degree

Area	88°N to 44°N lat,	88°N to 44°N lat,	88°N to 44°N lat,	88°N to 44°N lat,
Covered	0°E to 90°E lon	90°E to 180°E ion	180°E to 270°E lon	270°E to 360°E lon
Counts	megc88n000hb.img,	megc88n090hb.img,	megc88n180hb.img,	megc88n270hb.img
	megc88n000hb.lbl	megc88n090hb.lbl	megc88n180hb.lbl	megc88n270hb.lbl
Radius	megr88n000hb.img,	megr88n090hb.img,	megr88n180hb.img,	megr88n270hb.img,
	megr88n000hb.lbl	megr88n090hb.lbl	megr88n180hb.lbl	megr88n270hb.lbl
Topography	megt88n000hb.img,	megt88n090hb.img,	megt88n180hb.img,	megt88n270hb.img,
	megt88n000hb.lbl	megt88n090hb.lbl	megt88n180hb.lbl	megt88n270hb.lbl
Area	44°N to 0° lat,	44°N to 0° lat,	44°N to 0° lat,	44°N to 0° lat,
Covered	0°E to 90°E lon	90°E to 180°E lon	180°E to 270°E lon	270°E to 360°E lon
Counts	megc44n000hb.img,	megc44n090hb.img,	megc44n180hb.img,	megc44n270hb.img
	megc44n000hb.lbl	megc44n090hb.lbl	megc44n180hb.lbl	megc44n270hb.lbl
Radius	megr44n000hb.img,	megr44n090hb.img,	megr44n180hb.img,	megr44n270hb.img,
	megr44n000hb.lbl	megr44n090hb.ibl	megr44n180hb.lbl	megr44n270hb.lbl
Topography	megt44n000hb.img,	megt44n090hb.img,	megt44n180hb.img,	megt44n270hb.img,
	megt44n000hb.lbl	megt44n090hb.lbl	megt44n180hb.lbl	megt44n270hb.lbl
Area	0° to 44°S lat,	0° to 44°S lat,	0° to 44°S lat,	0° to 44°S lat,
Covered	0°E to 90°E lon	90°E to 180°E lon	180°E to 270°E lon	270°E to 360°E lon
Counts	megc00n000hb.img,	megc00n090hb.img,	megc00n180hb.img,	megc00n270hb.img,
	megc00n000hb.lbl	megc00n090hb.lbl	megc00n180hb.lbl	megc00n270hb.lbl
Radius	megr00n000hb.img,	megr00n090hb.img,	megr00n180hb.img,	megr00n270hb.img,
	megr00n000hb.lbl	megr00n090hb.lbl	megr00n180hb.ibl	megr00n270hb.lbl
Topography	megt00n000hb.img,	megt00n090hb.img,	megt00n180hb.img,	megt00n270hb.img,
	megt00n000hb.lbl	megt00n090hb.lbl	megt00n180hb.lbl	megt00n270hb.ibl
Area	44°S to 88°S lat,	44°S to 88°S lat,	44°S to 88°S lat,	44°S to 88°S lat,
Covered	0°E to 90°E lon	90°E to 180°E lon	180°E to 270°E lon	270°E to 360°E lon
Counts	megc44s000hb.img,	megc44s090hb.img,	megc44s180hb.img,	megc44s270hb.img,
	megc44s000hb.lbl	megc44s090hb.lbl	megc44s180hb.lbl	megc44s270hb.lbl
Radius	megr44s000hb.img,	megr44s090hb.img,	megr44s180hb.img,	megr44s270hb.img,
	megr44s000hb.lbl	megr44s090hb.lbl	megr44s180hb.ibl	megr44s270hb.lbl
Topography	megt44s000hb.img,	megt44s090hb.img,	megt44s180hb.img,	megt44s270hb.img,
	megt44s000hb.lbl	megt44s090hb.lbl	megt44s180hb.lbl	megt44s270hb.lbl

Fixing the Bi-Gradient Problem

- Open the global TIFF file in Adobe
 Photoshop. It will have a light area and a dark area, which are both gradients.
- Use the magic wand tool set to a tolerance of 50 and with contiguous and anti-aliasing turned off to select the light area (low altitude).
- Choose **Image-Adjustments-Levels** and move the white output slider to **128** and the black input slider to the edge of the curve.
- Inverse the selection and choose

 Image-Adjustments-Levels again. Move the black output slider to 128 and the white input slider to the edge of the curve.

Part 2: Turning the Heightmap into a 3D Model

- Open the saved heightmap into Adobe Photoshop (newer version).
- Select and crop the part you want.
- Choose 3D, then New Mesh from
 Layer, then Depth Map to, then Solid
 Extrusion.
- A model will appear in a few moments. It will have exaggerated height.
- Choose **3D**, then **Export 3D Layer**, and save as a **WavefrontOBJ**.
- You won't want to 3D print this yet it will crack through the lowest elevation.

SculptGL

- SculptGL is an online browser-based 3D modeling platform. It can be used to model and paint many organic shapes.
- Easy tool set that can take a virtual ball of clay and pull and push it, adding polygons automatically as you go.
- Examples: Creating 3D portraits of famous scientists or alien life forms.

Flattening the Model in SculptGL

- Inside **SculptGL**, choose **Scene**, then **Clear Scene** to get rid of the clay ball.
- Import your terrain model.
- To flatten the height, choose the Transform tool in the pull-down Tool menu on the right.
- Choose the blue box (not the arrow or arc). It will turn yellow. Push it in to flatten until the height of the model looks realistic.

Adding a Base in SculptGL

- Choose **Scene**, then **Add Cube**. A large cube will appear and will be selected the terrain will go dark (unselected).
- Use the **Transform** tool to shrink the cube and move it so that it is just barely touching the bottom of the terrain.
- Select both objects by holding down **Shift** and clicking on them.
- Choose **Scene**, then **Merge Selection**.
- Export the model as an .obj or .stl file. It is now suitable for 3D printing.

3D Printing

- Once the models are merged, you will need to reduce their resolution to make them printable.
- Using the Topology pull down menu, move the slider to about 250, then choose
 Remesh.
- The model can now be exported as an .STL or .OBJ and sliced and printed in your favorite slicer software.

Other Sources of Big Data

- NASA Geosciences Data:
- NASA Image Data:
- NOAA data (oceans, weather, climate):
- CDC Disease Data:
- U.S. Census Bureau (demographics, population, voting):
- Infrared Astronomy Data IPAC.
- The challenge is to find raw data that hasn't already been interpreted and the tools to manipulate it.

https://pds-geosciences.wustl.edu/
https://photojournal.jpl.nasa.gov/
https://data.noaa.gov/datasetsearch/
https://www.cdc.gov/datastatistics/index.html
https://data.census.gov/cedsci/
https://irsa.ipac.caltech.edu/frontpage/

Or Use Your Own Field Data

- Field research can gather data on environmental conditions such as water or soil quality.
- If tied to geographic or GPS data, it creates a grid of numbers.
- If all the rows are of equal length, then the data can be loaded into ImageJ from the National Institutes of Health by importing it as a **Text Image.**
- It will create a grayscale image with the highest number white and the lowest number black.
- This image can become a heightmap for 3D modeling.

Questions? Contact David Black at: elementsunearthed@gmail.com